

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 17
Volume 1, Issue 4, December 2010

Creating an Efficient Prefetching Mechanism by

Leveraging Rule Based Agents
Jyoti

1
, A. K. Sharma

2
, Amit Goel

3

1Sr. Lecturer, Dept of CE, YMCA Univ. of Science and Tech., Haryana, INDIA

2Prof. & Head, Dept of CE, YMCA Univ. of Science and Tech., Haryana, INDIA
3Manager, Evalueserve, Gurgaon, Haryana, INDIA

justjyoti.verma@gmail.com, ashokkale2@rediffmail.com, goelamit1@yahoo.com

Abstract: Prefetching and caching are two well-known approaches

for improving the performance of the Web and have become

essential components of the Web infrastructure. But without their

careful usage, both can result in the depletion of the performance

which they could render complementing each other’s drawbacks. In

recent years, agents have become a very popular paradigm in

computing because of their flexibility, modularity and general

applicability to a wide range of problems. This paper provides a

novel approach wherein agents have been introduced between client

machines and proxy server to help the clients in getting the

prefetched documents of their interests thereby balancing both the

caching and prefetching.

Keywords: Prefetching, agents, web mining, proxy server

1. Introduction

The Web has evolved rapidly from a simple information-

sharing mechanism offering only static text and images to a

rich assortment of dynamic and interactive services, such as

video/audio conferencing, e-commerce, and distance learning.

The explosive growth of the Web has imposed a heavy

demand on networking resources and Web servers. Users

often experience long and unpredictable delays when

retrieving Web pages from remote sites [1]. Hence, an

obvious solution in order to improve the quality of Web

services would be the increase of bandwidth, but such a

choice involves increasing economic cost. However, the

higher bandwidth would solve temporarily the problems since

it would ease the users to create more and more resource-

hungry applications, bunching again the network. Therefore,

the network limitations will remain or worsen unless effective

software solutions are also provided. The authors of [2] have

proposed a methodology to incorporate a Predictive

Prefetching Engine (PPE) at the proxy level that helps in

creating a database of rules that are extracted by applying the

various data mining techniques at diverse levels on the proxy

log. The current paper extends the work of [2] by introducing

agents between clients and the proxy servers that will help in

the triggering of rules for prefetching the web documents

according to the client’s requirements. The organization of

the paper is as follows. The next three subsections give a brief

outline of the web caching, web prefetching and the agents in

general. Section II outlays the various factors that acted as

motivation for this work. Section III discusses the proposed

work followed by the conclusion and references.

 1.1. The Web Caching Approach

Caching proved itself as an important technique to optimize

the way the Web is used [3]. In particular, Web caching is

implemented by proxy server applications developed to

support many users. Proxy applications act as an

intermediate between Web users and servers. Users make

their connection to proxy applications running on their hosts.

The proxy connects the server and relays data between the

user and the server. At each request, the proxy server is

contacted first to find whether it has a valid copy of the

requested object. If the proxy has the requested object this is

considered as a cache hit or otherwise a cache miss occurs

and the proxy must forward the request on behalf of the user.

Upon receiving a new object, the proxy services a copy to

the end-user and keeps another copy to its local storage.

From the above discussion follows that Web caching

reduces bandwidth consumption, network congestion, and

network traffic because it stores the frequently requested

content closer to users. Also, because it delivers cached

objects from proxy servers, it reduces external latency (the

time it takes to transfer objects from the origin server to

proxy servers). Finally, caching improves reliability because

users can obtain a cached copy even if the remote server is

unavailable. As far as concerned the performance of a Web

proxy caching scheme, it is mainly dependent on the cache

replacement algorithm [4] (identify the objects to be

replaced in a cache upon a request arrival) which has been

enhanced by the underlying proxy server. However, cache

hit rates have not improved much with these schemes.

Particularly, a Web caching scheme has three significant

drawbacks:

 If the proxy is not properly updated, a user might receive

stale data,

 as the number of users grows, origin servers typically

become bottlenecks.

mailto:justjyoti.verma@gmail.com
mailto:ashokkale21@rediffmail.com
mailto:goelamit10@yahoo.com

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 18
Volume 1, Issue 4, December 2010

 Finally, several factors diminish the ideal effectiveness of

Web caching. The obvious factors are the limited system

resources of cache servers (i.e., memory space, disk

storage, I/O bandwidth, processing power, and

networking resources).

However, even if the cache space is unlimited, there are

significant problems that cannot be avoided by such an

approach. Specifically, large caches are not a solution

because, the problem of updating such a huge collection of

Web objects is unmanageable.

 Therefore, we must resort to an approach, which will predict

the future users’ requests and retain in cache the most

valuable objects.

 1.2. The Web Prefetching Approach

Prefetching attempts to overcome these limitations by pro-

actively fetching content before users actually request it [5].

Web prefetching is the process of deducing user’s future

requests for Web objects by locating popular requested

objects into the cache prior to an explicit request for them.

Unlike Web data caching, which exploits the temporal

locality, the Web prefetching schemes are based on the spatial

locality of Web objects. In particular, the temporal locality

refers to repeated users’ accesses to the same object within

short time periods, whereas, the spatial one refers to users’

requests where accesses to some objects frequently entail

accesses to certain other objects. Typically, the main benefits

of employing prefetching are that it prevents bandwidth

underutilization and reduces the latency. Therefore,

bottlenecks and traffic jams on the Web are bypassed and

objects are transferred faster. Thus, the proxies may

effectively serve more users’ requests, reducing the workload

from the origin servers. Consequently, the origin servers are

protected from the flash crowd events as a significant part of

the Web traffic is dispersed over the proxy servers. On the

other hand, the main drawback of systems which have

enhanced prefetching policies is that some prefetched objects

may not be eventually requested by the users. In such a case,

the prefetching scheme increases the network traffic as well

as the Web servers’ load. In order to overcome this limitation,

high accuracy prediction models have been used [6]. From

the above it occurs that caching and prefetching complement

each other in order to reduce the noticeable response time

perceived by users [7].

1.3. The Agents

The details of mobile agents and their employment in a

distributed environment can be found elsewhere [8, 9]. Here,

a brief introduction of mobile agents and their role in a

network-based information system has been discussed. The

term mobile agent is often context-dependent and has two

separate and distinct concepts: mobility and agency. The term

agency implies having the same characteristics as that of an

agent. These are self contained and identifiable computer

programs that can move within the network from node to

node and act on behalf of a user or other entity. These can

halt execution from a host without human interruption ([10]).

The current network environment is based on the traditional

client/server paradigm as shown in Fig.1.

Fig. 1 Client/ Server Communication

However, in the case of mobile agents employed in a

network, the service provision/utilization can be distributed in

nature and is dynamically configured according to changing

network performance metrics like congestion and user

demand for service provision ([11]).

Fig. 2 Mobile Agent Communication

Mobile agents are typically suited to applications requiring

structuring and coordinating wide area network and

distributed services involving a large number of remote real

time interactions. They can decide how best to handle a user’s

request based on past data or history of a similar request.

These programs are therefore capable of learning from user

behavior to some extent. Fig. 2 shows how agents can act as

the intermediary between the clients and the proxy to meet

the client’s needs.

2. Motivation

Despite of the many efforts done by the industry and the

research community to improve the World Wide Web

performance, the web latency perceived by the users is still a

perennial issue to reduce. The rising up of the Web

architecture techniques such as web caching, prefetching and

replication have became an important solution to reduce the

user perceived latency. These techniques make use of the

temporal, spatial and geographical locality properties of web

objects to improve the web performance [12]. In the open

Mobile
Agents

Request

Response

Client

M/C

Proxy/ Web

Server

Response

Request Client

Machine

Proxy/ Web

Server

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 19
Volume 1, Issue 4, December 2010

literature, there are several proposals about the benefits of the

above techniques applied at different elements of the generic

Web architecture (i.e. clients, proxies, servers). In [13]

authors suggests that the use of caching can reduce up to 26%

the latency; also the use of prefetching can improve the web

performance up to 57%. Furthermore, the combined use of

caching and prefetching can reduce the latency perceived up

to 60%. Nevertheless, authors in [14] take into account the

current Web generation; point out a theoretical upper bound

of 97% of latency reduction when prediction is done in a

collaborative manner between proxies and servers. In [15],

the authors present a non-interfering web prefetch system

between clients and servers, unfortunately there is not a

caching module in its architecture. An attempt to integrate

web caching and prefetching was done by [16] in an

interesting proposal where both techniques were applied only

at the proxy server side and the used workload was generated

by a synthetic workload generator. The authors in [17]

present an extended study about a prefetching technique and

its impact on the Proxy Cache Server in a real WAN

environment (i.e. university campus). The later proposal

contributes with many useful considerations (e.g. log

analysis, session estimation, web object types) to take into

account when prefetching is applied. In [2], authors have

proposed a framework for extracting relevant web pages from

WWW using data mining. They proposed a Predictive

Prefetching Engine (PPE) that sits on the proxy server. Since

a proxy server lies between a web browser and a web server,

it is a potential tool that can be suitably employed to reduce

the www latency i.e. it can intercepts all requests to the web

server to see if it can fulfill the requests by itself. If not, then

only it may forward the request to the web server. The job of

PPE is to preprocess the proxy web log to perform the

preprocessing tasks like reduction of search space, user and

session identification and path completion. After

preprocessing a cleaner version of log is formed called data

mart. The next step applies data mining operations like rough

set clustering so as to narrow down the look up into the log

and thus reducing the complexity of the overall process.

Following this is the rule generation phase which extracts the

rules for prediction. The data mining operations like rough set

clustering, markov and association rules if applied alone do

not provide accuracy. Therefore, authors have carefully

integrated the three operations to improve the prediction

accuracy thereby making the repository of the rules that will

help in prefetching of the desired documents [18]. The

proposed work extends the effort of [2, 18] by introducing

agents between clients and the proxy servers that will help in

the triggering of rules for prefetching the web documents

according to the client’s requirements.

3. Proposed architecture

The proxy is chosen as the deployment location for PPE since

the active involvement of the clients is not desirable as that

would require the clients to involve actively which clients

tend to avoid and the focus is to make the structure as

transparent as possible. Our approach requires input from

several clients and thus choosing a single client as a point of

deployment would not have been beneficial. The web servers

1The rule database can be organized using some indexing scheme
themselves are involved in several other tasks that require a

lot of memory and processing time and including one more

process would have affected the throughput of the web

servers. The outcome of the PPE is the repository of rules of

the form Di ═> Dj or Di ═> Dj ═> Dk

 These rules will be of no use if they are not fired according

to the client’s demands. To effectively fire the desired rules, a

layer of agents has been introduced between the client

machines and the Proxy’s PPE. The proposed framework is

shown in fig.3. For every client machine, there will be a

dedicated intelligent agent providing its services. The agents

will work in the following manner:

 3.1. Prefetching Scheme

Given that we have a set of rules in the repository created and

maintained by the PPE, the prefetching scheme works as

follows:

1. Let the request be for document A.
2. The agent scans the rule database

1
 for the rules of the

form A→X for some document X.
3. The agent then scans the database for every rule or part

of the rule which has X in its sequence (e.g. A→ Y→X

→Z). The only exception to this scan would be in the

case of X being the last document in the sequence.

Fig.3 Proposed Architecture for prefetching the documents
 from the rule database of Proxy’s PPE to the client’s cache

4. As it scans, the agent brings all the documents that

succeed X to the hint list maintained by the agent itself

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 20
Volume 1, Issue 4, December 2010

and accordingly prefetch the corresponding web page

from the proxy server to the client’s cache.

5. The agent continues the scan and populates the hint list

till such time the user requests for a web page which

doesn’t appear in the sequence. In such case, the agent

cleans up the hint list and starts afresh (step 2).

Conclusion

 The paper discusses the new approach to prefetch the

documents from the proxy server to the client’s cache. For

performing the above said task, agents have been introduced

between the client machines and the proxy server. The Proxy

server holds the PPE whose task is to make the rule database

by applying the various data mining techniques on the

proxy’s web log that marks every entry which exists between

the client and the web servers. The agents thus effectively

trigger the desired rules according to the interests of the users.

There is a dedicated agent rendering its services for each user

so that at any instant when the user’s line of interest changes,

the agents change there line of action.

References

[1] Pallis G, Vakali A., “Insight and perspectives for content

delivery networks”. Commun ACM (CACM) 2006;

49(1):101–6.

 [2] Jyoti, A.K. Sharma, Amit Goel, “A Framework for

Extracting Relevant Web Pages from WWW using web

mining”, In Proc of International journal of Computer Society

and Network security, Seoul, Korea

[3] Rabinovich M, Spatsheck O., “Web caching and

replication.” Addison Wesley; 2002

[4] Podlipnig S, Boszormenyi L., “A survey of Web cache

replacement strategies”. ACM Comput Surveys

2003;35(4):374–98.

[5] Jiang Y, Wu M, Shu W., “Web prefetching: costs,

benefits and performance”. In: Proceedings of the 7th

international workshop on web content caching and

distribution (WCW2002). Boulder, Colorado; 2002.

[6] Yang Q, Zhang H., “Integrating Web prefetching and

caching using prediction models.” World Wide Web

2001;4(4):299–321.

[7] Kroeger TM, Long DDE, Mogul JM, “Exploring the

bounds of web latency reduction from caching and

prefetching.” In Proceedings of the USENIX symposium on

Internet technologies and systems. Monterey, California,

USA; 1997

[8] Karmouch A. and V. A. Pham (1998), “Mobile Software

agents: An Overview”, IEEE Communications Magazine,

36(7), 26-37.

[9] M. K. Perdikeas et al (1999), “Mobile Agents Standards

and Available Platforms”, Comp.Net, 31(19), 1999-2016.

[10] J. Cao, G. H. Chan, W. Jia, and T. Dillon (2001),

“Check-pointing and Rollback of Wide-Area Distributed

Applications using Mobile Agents”, Proceedings,

International Parallel and Distributed Processing Symposium,

San Francisco: IEEE Computer Society Press.

[11] Ahmad, H. F. and Helene Arfaoui, Mori, K (2001),

“Autonomous Information Fading by Mobile Agents for

Improving User’s Access Time and Fault Tolerance”,

Proceedings 5
th

 International Symposium on Autonomous

Decentralized Systems, 279-283.

[12] M. Rabinovich and O. Spatscheck, “Web Caching and

Replication”. Addison Wesley, 2002.

[13] T. M. Kroeger, D. D. Long, and J. C. Mogul, “Exploring

the bounds of web latency reduction from caching and

prefetching,” in Procc. of the 1
st
 USENIX Symp. on Internet

Technologies and Systems, Monterey, USA, 1997.

[14] J. Domenech, J. Sahuquillo, J. A. Gil, and A. Pont, “The

impact of the web prefetching architecture on the limits of

reducing user’s perceived latency,” in Procc. of the 2006

IEEE/WIC/ACM Inter. Conf. on Web

Intelligence. IEEE, 2006.

[15] R. Kokku, P. Yalagandula, A. Venkataramani, and M.

Dahlin, “NPS: A non-interfering deployable web prefetching

system,” in Procc. of the USENIX Symp. on Internet

Technologies and Systems, Palo Alto, USA, 2003.

[16] W.-G. Teng, C.-Y. Chang, and M.-S. Chen, “Integrating

web caching and web prefetching in client-side proxies,”

IEEE Transactions on Parallel and Distributed Systems, vol.

16, no. 5, pp. 444–455, 2005.

[17] C. Bouras, A. Konidaris, and D. Kostoulas, “Predictive

prefetching on the web and its potential impact in the wide

area.” World Wide Web, vol. 7, no. 2, pp. 143–179, 2004.

[18] Jyoti, A.K. Sharma, Amit Goel, “A Novel Approach to

Determine the Rules for Web Page Prediction using

Dynamically Chosen K-Order Markov Models”, In Proc of

IEEE sponsored International Conference on Advances and

Emerging trends in Computing Technologies, 2010

